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The formation of spatial structures lies at the heart of developmental processes. However, many of the
underlying gene regulatory and biochemical processes remain poorly understood. Turing patterns consti-
tute a main candidate to explain such processes, but they appear sensitive to fluctuations and variations
in kinetic parameters, raising the question of how they may be adopted and realised in naturally evolved
systems. The vast majority of mathematical studies of Turing patterns have used continuous models
specified in terms of partial differential equations. Here, we complement this work by studying Turing
patterns using discrete cellular automata models. We perform a large-scale study on all possible two-
species networks and find the same Turing pattern producing networks as in the continuous framework.
In contrast to continuous models, however, we find these Turing pattern topologies to be substantially
more robust to changes in the parameters of the model. We also find that diffusion-driven instabilities
are substantially weaker predictors for Turing patterns in our discrete modelling framework in compar-
ison to the continuous case, in the sense that the presence of an instability does not guarantee a pattern
emerging in simulations. We show that a more refined criterion constitutes a stronger predictor. The sim-
ilarity of the results for the two modelling frameworks suggests a deeper underlying principle of Turing
mechanisms in nature. Together with the larger robustness in the discrete case this suggests that Turing
patterns may be more robust than previously thought.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Nature is full of highly structured multi-cellular organisms that
develop from single fertilized cells. It remains a key question how
these can evolve robustly in the presence of environmental fluctu-
ations. The Turing mechanism has been proposed to explain such
developmental patterning processes. It was first proposed by Alan
Turing in 1952 (Turing, 1990). The Turing mechanism gives rise to
self-organised patterns in the local concentrations of biochemical
components in reaction–diffusion systems. These lead to patterns
such as spots, stripes and labyrinths (Kondo andMiura, 2010). Such
inhomogenous patterns are induced by diffusion of the compo-
nents. Due to this counter-intuitive concept, and the observation
that Turing patterns are highly sensitive to initial conditions and
variations in kinetic parameter values, the Turing mechanisms
had been dismissed from the developmental community for almost
two decades (Marcon and Sharpe, 2012).

It was not until 1972 that Turing’s idea was revived by Gierer
and Meinhardt who extended and formalised Turing’s work
(Gierer and Meinhardt, 1972). However, while it has been possible
to engineer Turing systems in chemical systems for several dec-
ades (Castets et al., 1990; Lengyel and Epstein, 1992) and despite
some indications of suitable reaction–diffusion systems
(Meinhardt, 1982), the experimental technology available at the
time was not able to convincingly identify Turing mechanisms in
biological systems. It was not until another three decades later that
technological advances have enabled compelling experimental evi-
dence of Turing-like mechanisms.

Economou et al. (2014). Examples include the patterning of
palatel ridges and digits, hair follicle distribution, and the patterns
on the skins of animals, such as fish and zebras (Raspopovic et al.,
2014; Sick et al., 2006; Jung et al., 1998; Nakamasu et al., 2009;
Economou et al., 2012). However, due to the complexity of the
underlying systems, the exact molecular mechanisms are hard to
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identify most of the time, making it difficult to prove that the
Turing mechanism exists in nature. The sensitivity to parameters
constitutes another problem as it is not clear how biological sys-
tems could have evolved to find these small parameter ranges,
and how these developmental processes can be so robust to extrin-
sic fluctuations. This has resulted in a large number of theoretical
studies in recent years. In the past, the majority of these studies
were performed within a deterministic continuous framework in
terms of partial differential equations (PDEs). However, in the last
two decades a growing amount of studies have focused on differ-
ent types of models. One direction has focused on more realistic
models, such as models including stochasticity (Erban and
Chapman, 2019). One important result that these studies have
found is that stochastic models are capable of producing patterns
in larger regions in parameter space than their continuous counter
parts (Butler and Goldenfeld, 2009; Biancalani et al., 2010; Butler
and Goldenfeld, 2011; Cao and Erban, 2014; Biancalani et al.,
2017; Di Patti et al., 2018), i.e. they are more robust. Other exten-
sions includemodelling domain growth (Woolley et al., 2011; Klika
and Gaffney, 2017; Van Gorder et al., 2021). It has been found that
domain growth may lead to larger robustness (Crampin et al.,
1999), can give rise to Turing patterns in networks that would
otherwise would not produce any (Madzvamuse et al., 2010), and
may change the type of pattern (Konow et al., 2019). Other studies
have found that time delays in interactions can influence the
robustness of networks in various ways (Gaffney and Monk,
2006; Seirin-Lee et al., 2011; Woolley et al., 2012; Yi et al., 2017;
Jiang et al., 2019). Modelling dynamics on random networks or
heterogeneous space has been found to give rise to intriguing
effects such as hysteresis (Nakao and Mikhailov, 2010) or different
types of patterns (Tompkins et al., 2014). Agent-based approaches
modelling individual cells have been used to model stripe forma-
tion in zebra fish (Volkening and Sandstede, 2015; Caicedo-
Carvajal and Shinbrot, 2008; Woolley et al., 2014). Recently, such
individual-based modelling of cells has been combined with a con-
tinuous reaction–diffusion description of morphogens in
Macfarlane et al. (2020). Some studies have also investigated pat-
terning mechanisms different to Turing in recent years (Halatek
and Frey, 2018), such as mechanisms where chemical processes
interact with mechanical processes such as tissue dynamics
(Hiscock and Megason, 2015; Mercker et al., 2016; Veerman
et al., 2021).

Instead of increasing the model details, another line of research
has focused on reducing model complexity and employ more
abstract models. The motivation behind these simplified models
is to make it easier to identify fundamental principles underlying
patterning mechanism, as well as allowing more in-depth analysis
in certain cases. Moreover, as every model is an abstraction of a
true biological system, the generalisation to different modelling
frameworks also suggests a certain robustness of the patterning
processes. Coupled-map lattices, for example, discretise space
and time while leaving concentrations continuous, and have been
used to analyse Turing systems (Xu et al., 2010; Huang and
Zhang, 2016; Wang et al., 2019). Cellular automata constitute
one further level of abstraction in that they model concentrations
by a finite set of discrete states. Variations of CAs have been used
extensively in the context of biological pattern formation
(Dormann et al., 2001; Deutsch and Dormann, 2005; Alber et al.,
2003; Zeng et al., 2004; Zeng et al., 2002; Boon et al., 1996;
Weimar and Boon, 1994).

These studies have greatly enhanced our understanding of Tur-
ing patterns in different biological scenarios. However, all of the
studies mentioned so far focused on a few example network
topologies. Some recent studies have performed large-scale analy-
ses of potential network topologies (Marcon et al., 2016; Zheng and
Shen, 2020; Scholes et al., 2019). Together these studies provide an
2

inventory of the types of network structures that are capable of
generating patterns and their robustness. However, such large-
scale studies have only been performed in the deterministic and
continuous framework. An important question is if these results
generalise to other types of modelling frameworks. This would
indicate a deeper underlying principle of the Turing mechanism
that is independent of the applied modelling framework.

LGCA models are a spatial extension of classical CA models that
discretise space. Their discrete and finite state space substantially
reduces the model’s complexity. This leads to LGCA models to be
inherently numerically stable and computationally efficient to
simulate. However, so far LGCA models have only been applied
to a single network exhibiting Turing patterns (Dormann et al.,
2001; Deutsch and Dormann, 2005).

Here, we perform a comprehensive analysis of all possible fully-
connected two-species networks and compare our results to the
continuous modelling case. In our mathematical analysis of LGCAs
we follow closely (Dormann et al., 2001). First, we analyse the net-
work topologies with respect to diffusion-driven instabilities and
analyse the emergence of patterns in simulations. In continuous
models it was found that a diffusion-driven instability is a strong
indicator of a pattern to emerge in simulations (Scholes et al.,
2019). For LGCA models it has been shown for some specific sys-
tems that a diffusion-driven instability can also give rise to pat-
terns in simulations. However, this is not always the case
(Dormann et al., 2001; Deutsch and Dormann, 2005). It remains
unclear how strong of an indicator a diffusion-driven instability
is for pattern formation in the LGCA framework. Here, we analyse
this comprehensively for all two-species models and show that a
more refined instability criterion for LGCA models constitutes a
better predictor for patterns emerging in simulations. To the best
of our knowledge, this is the first large scale study on Turing pat-
terns for a discrete modeling framework.

This article is structured as follows. In Section 2 we introduce
the mathematical description of the LGCA, its simulation procedure
and the definition of diffusion-driven instabilities. Next, we
describe simulation details and how to identify patterns in simula-
tions. Subsequently, in Section 3 we present the results obtained
from our analysis of two-species networks and compare these
results to the continuous case. Finally, we discuss the results and
conclude in Section 4.
2. Methods

In this section we present the mathematical background on lat-
tice gas cellular automata models (LGCAs) (Section 2.1), introduce
the employed mean-field approximation (Section 2.2), define
diffusion-driven instabilities (Section 2.3), and give simulation
details in Section 2.4.
2.1. The LGCA model

We consider systems that consist of two interacting species
modelled as discrete particles on a one-dimensional discrete regu-
lar grid lattice. This may be viewed as a fictitious discretisation of
continuous space or as a description of discrete physical objects
such as cells in a tissue (Deutsch and Dormann, 2005). The con-
crete physical interpretation depends on the specific system stud-
ied. We refrain from an interpretation here since we provide a
general study of LGCAs.

The dynamics are modelled in discrete time steps that itera-
tively update the state of the system. Each update consists of sep-
arate reaction, shuffling, and diffusion steps, which are evaluated
successively. Each spatial position consists of three compartments
known as ‘‘velocity channels”, which can be either occupied or
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unoccupied by a single particle. Two of the velocity channels cor-
respond to diffusion to the left and to the right, respectively, while
the third channel is the ‘‘rest channel” meaning a particle occupy-
ing this channel does not diffuse (see below and Supplementary
material S1 for more details). The inclusion of a rest channel has
been found to help avoid checkerboard effects (see Supplementary
material S3 for examples) (Deutsch and Dormann, 2005).

Each spatial position hence can be occupied by a maximum of
three particles. Accordingly, we define the state of the system at
time step k and lattice position r as

g r; kð Þ ¼ g1;1 r; kð Þ;g1;2 r; kð Þ;g1;3 r; kð Þ;g2;1 r; kð Þ;g2;2 r; kð Þ;g2;3 r; kð Þ
� �

:

ð1Þ
Each gr;i r; kð Þ is a Boolean variable that represents the occu-

pancy of velocity channel i of species r, with gr;i r; kð Þ ¼ 1
(gr;i r; kð Þ ¼ 0) meaning the channel is occupied (unoccupied). Let
further nr r; kð Þ denote the total number of particles of species r
at spatial position r and time k,

nr r; kð Þ ¼
X3
i¼1

gr;i r; kð Þ: ð2Þ

Next, let X ¼ 0;1;2;3f g � 0;1;2;3f g denote the set of all possi-
ble states of n1 r; kð Þ;n2 r; kð Þð Þ. We define the reaction step by a map
F : X ! X, where each state x 2 X is mapped onto
F xð Þ ¼ f 1 xð Þ; f 2 xð Þð Þ 2 X. During the reaction step, each
n1 r; kð Þ;n2 r; kð Þð Þ in each spatial position r is updated indepen-
dently according to F with a probability 0 < p 6 1, and it remains
the same with probability 1� pð Þ. For p ¼ 1 the reaction step
becomes deterministic, and a smaller p introduces more stochas-
ticity to the system. We refer to p as the ‘‘noise parameter” (Fig. 1).

The state transition graph of the map F is a directed graph with
the set of vertices X, and the set of edges x; F xð Þð Þjx 2 Xf g for all
x 2 X. See Appendix A for more details.

The reaction topology of the map F, also known as ‘‘interaction
graph” in the literature (Richard and Comet, 2007), is a graph that
summarises the interactions between species: each species is rep-
resented by a node and each interaction is represented by an edge.
Each edge is assigned a positive (negative) sign if the source node
of the edge acts as an activator (inhibitor) on the target node. The
edges can be identified from the state transition graph as follows:
for species i; j 2 1;2f g there is a positive (negative) edge from spe-
cies j to i if there exists a state x ¼ x1; x2ð Þ 2 X such that
f i xi; xj þ 1
� �� f i xi; xj

� �
is positive (negative). Intuitively, this means

that an increase in xj is likely to lead to an increase (decrease) in xi
(see Supplementary material S2 for more details).

Note that within the state space there exist maps F : X ! X, for
which there exist x;x0 2 X such that f i xi; xj þ 1

� �� f i xi; xj
� �

> 0 and
Fig. 1. (a) The figure shows an example map F which determines the reaction step of th
X ¼ 0;1;2;3f g � 0;1;2;3f g and encodes the interactions of the species as described in Se
topology that summarises the interactions between the two species.

3

f i x0i; x0j þ 1
� �� f i x0i; x0j

� �
< 0, which means no single sign can be

assigned to the edge from j to i. We omit such maps from our anal-
ysis since we are only interested in maps that can be assigned to
the topologies in Fig. 2.

Following the reaction step, the diffusion step acts simultane-
ously over all lattice positions and mimics a random walk of the
particles on the lattice. It is comprised of two parts: a local random
shuffling, where the particles of each lattice position are randomly
redistributed across the three velocity channels; this is followed by
a deterministic jump step, where a particle is moved on the lattice
by a predetermined amount of spatial positions dr 2 Nþ in the
direction associated with the velocity channel i it is occupying,
ci 2 �1;0;þ1f g.

Following Deutsch and Dormann (2005), one can write a system
of microdynamical difference equations

gr;i r þ drci; kþ 1ð Þ � gr;i r; kð Þ ¼ Cr;i g r; kð Þð Þ ð3Þ

where Cr;i g r; kð Þð Þ represents the change in occupation numbers
due to the reaction and shuffling steps.

2.2. Mean-field approximation

So far, we have defined the dynamics of the LGCA in an algorith-
mic manner which is convenient to simulate stochastic simula-
tions but not convenient for mathematical analysis, in particular
in the context of pattern formation. We consider the mean-field
approximation as in Deutsch and Dormann (2005) which shifts
the mathematical description from the stochastic variables

gr;i r; kð Þ to their expected values mr;i r; kð Þ ¼ gr;i r; kð Þ
D E

by averag-

ing out random fluctuations. To obtain feasible equations,correla-
tions between channels are neglected.

This allows us to derive the so-called ‘‘lattice-Boltzmann equa-
tions” which describe the evolution of the expectation values of the
velocity channels (Dormann et al., 2001),

mr;i r þ drci; kþ 1ð Þ ¼ mr;i r; kð Þ þ Cr;i m r; kð Þð Þ; ð4Þ
where ci denotes channel i direction of propagation, c ¼ �1;0;1f g;
m r;kð Þ ¼ m1;1 r;kð Þ; . . . ;m2;3 r;kð Þð Þ and Cr;i m r;kð Þð Þ is;now;a; function;of
m r; kð Þ:

The mr;i are also referred to as ‘‘single-particle distributions” and
can be viewed as the probability of finding a particle of species r in
channel i on lattice position r at discrete time point k. The stochas-
tic shuffling of the particles across the channels within the diffu-
sion step means that the single-particle distributions for each
species r 2 1;2f g are indistinguishable, so we define mr ¼ mr;i for
i 2 1;2;3f g without loss of generality.

The mean-field approximation as described here has been used
in previous studies on Turing patterns using LGCAs (Dormann
e LGCA framework, i.e., it is a map from states X ¼ 0;1;2;3f g � 0;1;2;3f g to states
ction 2.1, (b) the corresponding state transition graph and (c) the resulting reaction



Fig. 2. The 21 two-species reaction topologies distributed across three levels of complexity, where complexity is defined by the number of edges which corresponds to the
number of interactions between the species. Highlighted in blue are the topologies that we find to contain maps producing diffusion-driven instabilities within the LGCA
framework as defined in (I). Highlighted in purple are the topologies found to produce Turing instabilities within the PDE framework. We find these five to be the only
topologies to produce patterns in LGCA simulations, as well as to be the exact same topologies that contain maps producing instabilities under the criterion in (II). The
diffusion-driven instability criterion in contrast falsely predicts topologies 6;7 and 14 to be able to produce patterns.
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et al., 2001; Deutsch and Dormann, 2005). It allows us to perform a
linear stability analysis which can be used to define instabilities as
predictors of patterns as we will describe in the following sections.
One goal of this study is to assess how meaningful this stability
analysis based on the mean-field approximation is.

2.3. Stability analysis

We next define diffusion-driven instabilities in the context of
LGCA using the lattice-Boltzmann equations in Eq.(4) by means
of a linear stability analysis. A diffusion-driven instability describes
the scenario where a stable steady state of a non-spatial system
becomes unstable in the spatial setting where components are
allowed to diffuse. By ‘‘stable” we mean that a small perturbation
around the steady state asymptotically converges back to the
steady state.

We start by defining a spatially homogeneous steady state �m of
the lattice-Boltzmann equations in Eq.(4) as the solution of

mr r; kþ 1ð Þ ¼ mr r; kð Þ; Cr m r; kð Þð Þ ¼ 0 for r 2 1;2f g ð5Þ
which corresponds to solving the non-spatial system without diffu-
sion. To assess the stability of a steady state �m we analyse the evo-
lution of a local perturbation of a certain wavenumber q around �m
by applying a Fourier transformation to the lattice-Boltzmann equa-
tions. This decouples the individual frequency modes allowing the
identification of unstable and stable modes. The evolution of the
Fourier modes can be described in terms of the so-called ‘‘Boltz-
mann propagator” C qð Þ (Frisch et al., 1987). Here, C qð Þ has only
two non-trivial eigenvalues k1 qð Þ and k2 qð Þ which can be derived
analytically (see Appendix C for the derivation and expressions).
Analyses of the spectrum of the Boltzmann propagator aim at estab-
lishing the stability of each mode, and, as a consequence, the possi-
ble emergence of patterns (Dormann et al., 2001; Deutsch and
Dormann, 2005). If jk1 qð Þj < 1 and jk2 qð Þj < 1 for all wave numbers
q, one can expect the system to fluctuate around a stable spatially
uniform solution, with no pattern emerging. Note that q ¼ 0 corre-
sponds to the non-spatial system. In analogy with the continuous
case, one could envisage the emergence of spatial patterns driven
by diffusion if the spatially homogeneous steady state is stable
but some modes can grow in time, that is, if the following condi-
tions are verified:
4

(I) jk1 0ð Þj; jk2 0ð Þj < 1 and jki q�ð Þj > 1 for some q� > 0 and i ¼ 1
or 2.

We refer to an instability that satisfies these conditions both as
instability type (I) and diffusion-driven instability. We call the wave
numbers q� for which jki q�ð Þj becomes maximal the dominant crit-
ical wave numbers. Dormann et al. (2001) and Deutsch and
Dormann (2005) discuss some cases. They analyse examples where
a critical wave number q� – 0 exists for which the corresponding
dominant eigenvalue is real, and there is an indication of emerging
spatial wavelength L=q�. This is notably the case for an activator-
inhibitor model that they study in detail, and whose reaction
topology is given as number 15 in Fig. 2. See Fig. 3 (a) for an exam-
ple simulation showing this behaviour and (b) for the correspond-
ing eigenvalues as a function of q. Checkerboard structures seem to
emerge if the dominant eigenvalue is smaller than �1, when oscil-
latory behaviours are expected (c.f. Eq. (21)). In contrast, for real
eigenvalues larger than 1 stationary patterns seem more likely to
emerge. They also identify examples of non-stationary spatial pat-
terns, when the eigenvalue corresponding to a critical wave num-
ber has non-zero imaginary part. Since we are interested in
stationary spatial patterns such as those emerging in activator-
inhibitor models, for our analysis we consider the following
criterion:

(II) the conditions in (I) are verified and ki q�ð Þ corresponding to
a dominant critical wave number q� is real and positive.

We refer to an instability that satisfies these additional condi-
tions as instability type (II). For the two-species systems studied
here we find that the dominant eigenvalues giving rise to
diffusion-driven instabilities are always real-valued. The additional
condition in (II) is hence equivalent to Re ki q�ð Þð Þ > 0 for the sys-
tems analysed here.
2.4. Simulation details and power spectrum analysis

Considering all different possible combinations of positive and
negative edges between the two species gives rise to the 21 differ-
ent fully-connected topologies shown in Fig. 2 (Scholes et al.,
2019), where we allow only two directed edges between the two



Fig. 3. (a) Simulation of the map F shown in Fig. 1. We find a clear pattern emerging. (b) Absolute values of corresponding eigenvalues k1 and k2 as a function of wave number
q. The figure shows that the non-spatial system is stable, that is jk1 0ð Þj; jk2 0ð Þj < 1, while it becomes unstable for intermediate q values and maximal for a dominant wave
number of q� � 7. This corresponds roughly to the wavelength L=q� � 14 observed in the pattern in (a). (c) Power spectrum of the simulation shown in b). The spectrum shows
a significant signal at a frequency value of q � 7, which corresponds to the dominant wave number q� maximising the eigenvalue found in b).

1 We did not observe any oscillatory behaviour of longer periods.
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nodes, and no more than one edge from a node to itself, to make
our results comparable to large-scale studies using PDE models
(Marcon et al., 2016; Zheng et al., 2016; Scholes et al., 2019). We
thus exclude maps that have edges which cannot be assigned a
positive or negative sign, as explained in Section 2.1. ‘‘Positive”
and ‘‘negative” edges represent activating and inhibiting interac-
tions, respectively, meaning that a species can only act as either
an activator or an inhibitor on the other species, or onto itself.
‘‘Fully-connected” refers to topologies in which both species influ-
ence each other.

We further reduce the number of maps to analyse by only con-
sidering asymptotic maps, which are defined by
f r xð Þ 2 0; xr;3f g;r ¼ 1;2. This corresponds to a switch-like beha-
viour: the total occupation number of each species gets either
updated to its maximal or minimal value, or remains the same.
The total number of asymptotic maps for the 21 topologies of
interest is 592;490. Fig. 2 shows the 21 possible reaction topolo-
gies grouped across three levels of complexity, which we define
as the number of edges in the topology.

We set the noise parameter of the reaction step introduced in
Section 2.1 to p ¼ 0:9. We found empirically that p ¼ 1 often leads
to the system getting stuck in absorbing states that prevent the
emergence of patterns; while smaller values of p introduce more
stochasticity which tends to destroy patterns (see Supplementary
material S3 for examples). We found p ¼ 0:9 to give rise to suffi-
cient stochasticity to prevent checker-board and artefact behaviour
while small enough to not destroy a substantial amount of
patterns.

Regarding the diffusion parameters d1 and d2 we found that the
combination d1; d2ð Þ ¼ 1;7ð Þ was the most likely combination to
produce patterns for most studied reaction maps (results not
shown). We also observed that small variations around this combi-
nation lead to negligible changes in the total number of maps that
produce patterns. We hence fix d1; d2ð Þ ¼ 1;7ð Þ throughout this
article for simplicity.
5

To account for the stochasticity of the system, we simulate a
given map a hundred times with random initial conditions in each
simulation for T ¼ 500 time steps on a domain of size L ¼ 101 (see
Section 2.1 for the simulation details). We found empirically that
these values are sufficient to ensure that the types of spatial struc-
tures and patterns emerging do not appear to change when further
increasing T or L.

Since we are interested in the emergence of stable patterns, we
aim to identify them from simulations in an automated way by a
Fourier spectrum analysis as described below. Some maps get
stuck in oscillatory patterns of wavelength 2 and a period of 2 time
steps, also known as ‘‘checkerboard effect” (Deutsch and Dormann,
2005) (see Supplementary material Fig. S4 (d) for an example). To
prevent these from being classified as patterns, we average the
simulations over the last two time steps1 before computing the
power spectrum via Fourier transform, which we subsequently aver-
age over the 100 different simulation runs.

Finally, we fit a Lorentz distribution to the maximum of the
resulting average power spectrum (see Fig. 3 (c) for an example
and Appendix D and Supplementary material S4 for details). The
scale parameter c of the fitted Lorentz distribution corresponds
to the width of the peak at half its height, and is hence a measure
for the peak width. A smaller c value indicates a sharper peak in
the Fourier transform and hence a clearer pattern in the simulation
result. For the purpose of the analysis, we choose the threshold
c ¼ 1 to classify the maps as producing or not producing a pattern.
The value c ¼ 1 ensures that randomly fluctuating simulation out-
comes are not classified as patterns, and is close to the value giving
the maximum F1 score (see Fig. 7 (b)). While the exact score
depends on the exact choice for c, the main conclusions of our
analysis is not impacted as long as c is chosen not too far from this
optimal value.



Fig. 4. Illustration of the hierarchical dependence of the different analysed properties of maps for all asymptotic two-species maps. The corresponding numbers of maps
fulfilling corresponding properties are also indicated.
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3. Results

In this section, we present the results obtained from both the
linear stability analysis in Section 2.3, and stochastic simulations
as outlined in Section 2.4. We start by discussing the results of
the stability analysis before discussing different qualitative beha-
viours in simulations. We next present results on the emergence
of patterns, and discuss different types of discrepancies between
the stability analysis outcome and simulation outcomes. Finally,
we discuss the robustness of the different topologies, and compare
the LGCA results to the continuous modelling framework.

3.1. Stability analysis

We find that out of the 592;490 asymptotic maps, 53;479 pos-
sess at least one stable steady state, where steady states in the fol-
lowing are always defined in terms of the mean-field analysis as
outlined in Section 2.2. We further find that a surprisingly large
number of these2 (40;519), which are more than 75%, possess a
diffusion-driven instability (c.f. (I)) and 22;965 of these fulfil the
more refined instability criterion (c.f. (II)). Maps with multiple stable
steady states are included here if at least one of their stable steady
states exhibits the respective instability. We thus find that the
refined criterion is substantially more restrictive, with it being ful-
filled by only roughly half as many maps as the diffusion-driven
one. Fig. 4 visualises the hierarchical dependence of the different cri-
teria, i.e. types of steady states, instabilities and simulation out-
comes, together with the corresponding numbers of maps fulfilling
them.

The maps with diffusion-driven instabilities are distributed
across eight reaction topologies (see Fig. 2, highlighted in blue).
2 Recall that both type (I) and type (II) instabilities are only defined for maps with a
stable steady state, c.f. Section 2.3
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All the maps within these topologies exhibit antagonistic beha-
viour between the two species, where the first species acts as
an activator of the second species, while the second species inhi-
bits the first. This activator-inhibitor principle is the generic
mechanism used to describe Turing instabilities, first introduced
by Gierer and Meinhardt (1972). Topology 8 corresponds to the
classical Gierer-Meinhardt model (c.f. Fig. 2), which consists of a
slowly diffusing autocatalytic activator and a fast diffusing antag-
onist (inhibitor) species (Gierer and Meinhardt, 1972). The other
seven topologies with diffusion-driven instabilities are all variants
of this core slow activator-fast inhibitor mechanism. Five of these
eight topologies contain maps with instabilities that fulfill the
conditions in (II). We refer to these topologies as ‘‘Turing
topologies”.
3.2. Types of simulation outcomes

Diffusion-driven instabilities only describe the local instability
of a steady state and do not guarantee the emergence of an actual
pattern in simulations of a model. Indeed, in continuous PDE mod-
els it has been found that Turing instabilities do not always give
rise to patterns in simulations (Scholes et al., 2019). Here, we find
the same to be true for LGCA systems. We observe various different
qualitative behaviours in simulations. Among these are oscillatory
simulation outcomes which we disregard since we are interested
in stationary patterns. We disregard these by averaging over the
final two time steps as described in Section 2.4. We classify the
remaining non-oscillatory outcomes into three categories: no
structure emerging; structure emerging without a characteristic
wavelength; and structure emerging with a characteristic wave-
length (Turing-like patterns). We are interested in the latter: the
‘‘characteristic wavelength” of a pattern does not depend on the
domain size (see Appendix E).



Fig. 5. Examples of simulation outcomes for three different maps for two different domain sizes of L ¼ 100 (top) and L ¼ 500 (bottom) each. The insets show the
corresponding power spectra (c.f. Section 2.4) (a) Example of no spatial structure forming. The corresponding power spectrum does not show a significant peak. (b) Example
of spatial structure with no characteristic wavelength. The corresponding power spectrum shows a peak at a small wavelength of q ¼ 1. (c) Example of spatial structure with a
characteristic wavelength. The power spectrum shows a peak at an intermediate q which leads to a wavelength of L=q where L is the domain size. This is the type of pattern
we are primarily interested in.
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Fig. 5 (a) shows an example for the first case of no structure
emerging, which means that either random noise emerges (as
shown in Fig. 5 (a)) or a spatially homogeneous state is reached.
The corresponding power spectra do not contain significant signals
indicating the absence of a pattern.

The second qualitative behaviour breaks the symmetry of the
system and produces a structure without a characteristic wave-
length. This behaviour is similar to the phenomenon of phase sep-
aration in PDE models (Hyman et al., 2014). The majority of these
maps separates the domain into two parts, one highly expressed
side and the other lowly expressed. Fig. 5 (b) shows an example
of a map that breaks symmetry with no characteristic wavelength.
As the domain increases so does the resulting length-scale of the
structure.

The third characteristic behaviour, to which Turing patterns
belong, produces a stationary (i.e. non-oscillatory) spatial structure
with a characteristic wavelength that does not depend on the
domain size. Fig. 5 (c) shows an example of this behaviour.

To automate the analysis of simulation results we proceed as
explained in Section 2.4. For a simulation result to be classified
as a pattern, we require the Lorentzian fitted to the normalised
power spectrum averaged over 100 trials to have the scale c 6 c�,
i.e., the peak must not be too broad. Note that this criteria is some-
what arbitrary, as the distribution of c values for all maps is close
to continuous. We found empirically that the threshold c� ¼ 1
selects only maps that produce robust clear patterning.3 See Sec-
tion 2.4 for details.

For some maps different simulation runs can give rise to differ-
ent qualitative behaviours. For example, for some maps one
observes simulations showing noisy patterns, and some simula-
3 It should be noted that in the continuous case a similar problem arises: some
systems with Turing instabilities give rise to patterns with tiny amplitudes. It is
questionable how biologically relevant such systems are and it might be sensible to
apply some cutoff here on the amplitude of the pattern too to define what an actual
pattern is.
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tions showing oscillatory behaviour or homogeneous solutions.
The patterns give rise to clear peaks in Fourier space while the
oscillatory or homogeneous solutions do not give such a peak.
Averaging over several simulation runs will hence give an average
c value for the given map, which can be viewed as an effective
measure of patterning capability. See Section 2.4 and Supplemen-
tary material S4 for further details on this.
3.3. Instabilities as predictors for patterns

We find that only about 30% of the 40;519maps with diffusion-
driven instabilities produce a pattern in simulations. Thus a
diffusion-driven instability is only a weak predictor of a pattern
to emerge. This is in stark contrast to the continuous case where
only a very small fraction of systems with diffusion-driven insta-
bilities have been found not to produce patterns (Scholes et al.,
2019). For the 22;965 maps fulfilling the refined instability crite-
rion we find that about 50% lead to a pattern which suggests that
this is a better predictor. However, there are also more maps giving
rise to a pattern but do not fulfill this criterion. To make a more
systematic comparison we hence consider the confusion matrices
for each criterion, shown in Fig. 6, which gives the numbers of
maps categorised according to the four combinations of pattern/
no pattern in simulations and instability/no instability, both for
diffusion-driven and type (II) instabilities.

To quantify the overall predictability we note that the task of
predicting patterns in simulations can be viewed as a binary clas-
sification problem, where the goal is to use the instability beha-
viour of a map as the input variable to predict the simulation
outcome viewed as a binary target variable. We hence use the F1
score which is a standard measure to quantify the predictability
for such binary classification tasks (Chicco and Jurman, 2020).
The F1 score is given by the harmonic mean of the precision and
recall scores, where the precision is the ratio of correctly predicted
patterns with respect to all maps with patterns, while the recall is



Fig. 6. Confusion matrix for (a) the diffusion-driven instability criterion in (I); and (b) the confusion matrix for the instability criterion in (II). Shown are the numbers of maps
that fulfill the respective indicated criteria. We find that the instability type (II) fails to predict patterns in simulations in only slightly fewer cases than the diffusion-driven
instability (11;857 vs. 13;099 maps, see top left entries), while it predicts patterns falsely in substantial fewer cases (8;246 vs. 27;420 cases, see bottom left entries).
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the ratio of correctly predicted patterns with respect to all the pre-
dicted patterns (Chicco and Jurman, 2020). A larger F1 score corre-
sponds to a better predictability4. For diffusion-driven instabilities
we find a F1 score of about 0:43 while for type (II) instabilities we
obtain 0:55. We can therefore conclude that the instability criterion
in (II) is a better predictor.

In terms of different topologies we find that the eight topologies
6;7;8;9;14;15;16 and 20 possess maps with diffusion-driven
instabilities while only five of these, namely 8;9;15;16 and 20,
possess maps that give rise to patterns in simulations (see also
Fig. 2). The maps of topologies 6;7 and 14 with diffusion-driven
instabilities that fail to produce stationary patterns in simulations,
mostly give rise to simulations that enter into spatially-
homogeneous limit cycles, switching between high and low homo-
geneous expression levels (see Supplementary S3 for examples).
This is due to the eigenvalue giving rise to the instability being
negative (c.f. Section 2.3), which was our motivation for the refined
instability criterion. And indeed, we find that only topologies
8;9;15;16 and 20 possess instabilities as in (II), giving a one-to-
one correspondence between topologies giving rise to patterns in
simulations and topologies possessing instabilities satisfying the
more restrictive criterion (c.f. (II)). We will refer to these five
topologies as ‘‘Turing topologies” in the following. We thus find
the refined instability criterion to also be superior in terms of iden-
tifying the correct topologies.

So far we have used a threshold on the scale c of the Lorentzian
fit as a binary classifier to decide if a map produces a pattern or not.
Instead, we can alternatively view c as an inverse measure of the
quality of a pattern: the smaller c, the sharper the peak in the
power spectrum. Fig. 7 (a) shows the distribution of maps over
the c values for maps with diffusion-driven instabilities, for maps
with type (II) instabilities, and for maps without instabilities. We
find that the latter has a large peak at c � 15:9 which indicates a
homogeneous simulation outcome, and only little weight for small
c values. The distributions of the two instabilities, by contrast, have
large peaks for small c values with substantial weight below the
pattern threshold at c ¼ 1. The type (II) instabilities have more
weight below this threshold and less above it in comparison to
the diffusion-driven instabilities, indicating that they describe
maps producing more distinct patterns on average.
4 Note that the obtained numbers are dependent on the chosen threshold for c in
the definition of what is classified as a pattern (c.f. Section 2.4). If we choose a larger
threshold for c, then the ratio of maps with an instabilities that produce a pattern
would increase. However, so would the number of maps that produce patterns but
lack the instability. The F1 score takes into account this trade-off. Fig. 7 (b) shows the
F1 score as a function of this threshold choice, it shows that for all reasonable choices
of threshold instabilities of type (II) produce a better F1 score than instabilities of type
(I).
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Since we find the instability type (II) criterion to be more mean-
ingful than the diffusion-driven instability one in terms of predict-
ing the existence of patterns, we will primarily focus on this in the
following.
3.4. Discrepancies between stability analysis and simulations

As we have seen in Section 3.3, some maps with type (II) insta-
bilities do not produce a pattern in simulations (the same is true
for maps with diffusion-driven instabilities). This might be
expected since the criterion only indicates a local diffusion-
driven instability, and does not make statements about the global
behaviour, as already mentioned in Section 3.2. Moreover, here we
work with stochastic models, which means the random fluctua-
tions can ‘‘wash out” the wavelengths emerging from an instabil-
ity. Another reason for this discrepancy is that the system’s
dynamics can get stuck in homogeneous absorbing states. The
mean-field approximation used in the stability analysis may also
contribute to such discrepancies. Another potentially important
point is that we set a threshold for the scale parameter c to define
what we classify as a pattern.

As discussed in Section 3.3, we find 11;108 maps that produce a
stationary pattern despite not possessing a type (II) instability.
These are all distributed across the Turing topologies, namely
topologies 8, 9, 15, 16 and 20. 1;011 of these 5;285 maps possess
a stable steady state, and we find that these maps all have an
eigenvalue whose maximal absolute value is real, positive and
close to one, and are hence somewhat ‘‘close” to a type (II) instabil-
ity. One potential explanation why these give rise to patterns is
that fluctuations present in the model can push the system over
the threshold into the instability and hence lead to a pattern of
the corresponding wavelength. This has also been suggested in
Dormann et al. (2001). The remaining 4;274 maps do not possess
a stable steady state, and the emergence of such patterns cannot
be explained in the framework considered here, and therefore calls
for further investigations.
3.5. Robustness

We next study the robustness of the different topologies (Maini
et al., June 2012). By ‘‘robustness” we refer to the sensitivity of a
topology’s pattern generation ability with respect to uncertainties
in the model definition, i.e. with respect to the reaction map. We
define this robustness as the fraction of maps of the topology that
produces patterns in simulations. Fig. 8 shows the fraction of maps
that produce patterns for each topology. We find that for the Tur-
ing topologies a surprisingly large fraction of maps produce pat-



Fig. 7. (a) Comparison of the c distributions across sets of maps split into three categories: such with diffusion-driven instabilities (c.f. (I)); instabilities that satisfy the
conditions in (II); and those without any instabilities. The dotted vertical line indicates the threshold c ¼ 1 below which we classify a simulation outcome as a pattern (c.f.
Section 2.4). The peaks for large c values around 15:9 stem from spatially homogeneous simulation outcomes. We observe that the distributions of maps with both
instabilities have most of their mass at low gamma values, either close to or below the pattern threshold c ¼ 1. The ones without instabilities by contrast have only little
weight for small c values and a large peak beyond the signal threshold, i.e., the majority of maps gives rise to spatially homogeneous simulation outcomes. (b) F1 score of both
instability types as a function of the chosen c value for the pattern threshold. The dotted vertical line indicates the chosen threshold (c ¼ 1) for a pattern in our analysis.
Instabilities of type (II) produce a better F1 score than instabilities of type (I) for all reasonable choices of pattern thresholds.

Fig. 8. The figure shows the robustness values (defined as the fraction of maps
producing patterns in simulations) for each topology. We find surprisingly large
values of more than 28% for topologies 8 and 9. The robustness appears to decrease
with increasing complexity (defined as the number of interactions between the two
species, see Fig. 2)) to about 15% for topologies 15 and 16 and about 0:03% for
topology 20. The other topologies have robustness 0 since they do not contain any
maps that produce stationary patterns.
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terns, with fractions ranging from 0:032 to 0:28, meaning that up
to 28% of asymptotic maps of some topologies are capable of pro-
ducing stationary patterns. Interestingly, topology 8, which corre-
sponds to the classical Gierer-Meinhardt model (Gierer and
Meinhardt, 1972), was found to be the most robust topology by
this measure. We also find that the robustness decreases with
increasing complexity of the topologies (i.e. number of edges); this
suggests that simpler models appear to be less sensitive to uncer-
tainties in the precise model definition.

3.6. Comparison to continuous model

We next compare the results found so far using the LGCA
approach with results from the literature using the continuous
PDE approach. A direct comparison of individual systems of the
two modelling approaches is not possible since we deal with dis-
crete sets of reaction maps in the LGCA framework, while in the
9

continuous case we have with continuously varying parameters.
We thus compare the two approaches with respect to their overall
behaviours in a broader sense (Vittadello and Stumpf, 2020).

3.6.1. Instabilities and emerging patterns
In Fig. 2 the five two-node topologies known to produce Turing

instabilities in the continuous PDE case are highlighted in purple
(Zheng et al., 2016; Marcon et al., 2016; Scholes et al., 2019). Here,
we find that these five topologies produce type (II) instabilities and
patterns in simulations in the LGCA framework. Therefore, in terms
of patterns observed in simulations, we find a 1-to-1 correspon-
dence between the topologies in the LGCA and the continuous
frameworks.

3.6.2. Instabilities as predictors of patterns
In Section 3.3 we found that 51% of the maps with type (II)

instabilities produce a pattern in simulations (note that increasing
the patterning threshold for c would increase this number but
would also increase the number of falsely predicted patterning
maps, c.f. Section 3.3). This means that type (II) instabilities in
the LGCA framework do not guarantee an emerging pattern in sim-
ulations. We found this to be independent of how many stable
states a map possesses. In contrast, in continuous PDE models Tur-
ing systems with a single stable steady state have empirically been
found to always give rise to patterns in simulations (Scholes et al.,
2019). Only Turing systems with multiple steady states have been
found to sometimes converge to homogeneous steady states in
continuous models. Overall, type (II) instabilities that do not lead
to patterns in simulations seem to be substantially more frequent
in the LGCA framework. We may thus conclude that an instability
in the LGCA formalism is a weaker predictor for the existence of a
pattern than in the continuous case.

However, as already noted, the proportion of maps with type
(II) instabilities that produce a pattern depend on our choice of
the threshold for c. Recall that c can be viewed as a measure of
how clear of a pattern one observes in simulations. In the continu-
ous modelling framework, the amplitude of a pattern can be
viewed as a similar measure of pattern quality. Some continuous
models give rise to tiny amplitudes, and it is questionable how rel-
evant these are biologically and if they should really be considered
as ‘‘patterns”. To the best of our knowledge this has not been con-
sidered in large-scale studies concerned with the robustness in
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continuous frameworks (Marcon et al., 2016; Zheng et al., 2016;
Scholes et al., 2019). If one were to use a more sophisticated
approach and apply a threshold on the amplitude of a simulation
outcome in the continuous framework to classify them as patterns,
the predictability of Turing instabilities would decrease accord-
ingly. The disregard of pattern quality in continuous models should
be taken into account when considering the relatively weak pre-
dictability of instability type (II) found here for the LGCA approach.
3.6.3. Robustness
In Section 3.5 we defined the robustness of a topology in the

LGCA framework as the fraction of maps that produces patterns
in simulations. In the continuous modelling framework the robust-
ness is typically defined as the fraction of kinetic parameters pro-
ducing patterns in a given topology (Marcon et al., 2016; Zheng
et al., 2016; Scholes et al., 2019) (note that we do not consider
robustness with respect to changes in diffusion constants or topol-
ogy here as has for example been done in Scholes et al. (2019)).
While being somewhat similar these two definitions are not equiv-
alent and also depend on the considered set of maps and consid-
ered range of kinetic parameters, respectively. They can hence
not be compared directly. Nevertheless, it is notable that the
robustness values found here (ranging from 0.032 to 0.28) are sub-
stantially larger than values reported for continuous models (less
than 0.01 for example reported in Scholes et al. (2019)). Applying
an amplitude threshold as suggested in Section 3.6.2 would
decrease the robustness found in continuous systems even further.

The analysis conducted in this work was restricted to a one-
dimensional system, which raises the question how our results
would generalise to higher dimensions. In contrast to the continu-
ous PDE framework where the stability analysis is equivalent for all
spatial dimensions due to rotational symmetry of the system
(Scholes et al., 2019), in multiple spatial dimensions in the LGCA
case pattern formation and linear stability analysis are influenced
by the lattice geometry. An activator-inhibitor model is studied
in two dimensions in Deutsch and Dormann (2005). Empirically
we found for a number of maps that if they give rise to patterns
in one spatial dimension they also do so in two dimensions, sug-
gesting that results would be similar in higher dimensions. It
would be interesting to explore this more thoroughly. We leave
this for future work.
4. Discussion

Recent experimental findings (Raspopovic et al., 2014; Jung
et al., 1998; Sick et al., 2006; Economou et al., 2012; Nakamasu
et al., 2009) have resulted in Turing patterns being widely accepted
as an important mechanism for spatial patterning in developmen-
tal processes. These findings have raised questions about the key
features – or design principles – underlying the Turing mechanism
and its robustness (Maini et al., June 2012). A variety of theoretical
investigations aiming to answer these questions have been
reported since. However, most of these have focused on single
models (Bard and Lauder, 1974; Collier et al., 1996; Oster, 1988;
Crampin et al., 2002). More recently, some large-scale studies have
systematically analysed large parts of possible design spaces,
thereby providing a novel understanding on how common and
robust Turing pattern mechanism are (Marcon et al., 2016; Zheng
et al., 2016; Scholes et al., 2019). The majority of these theoretical
studies have used differential equation models with continuous
concentrations.

Since every mathematical model of a biological system is an
abstraction, it is difficult to untangle those dynamics and features
attributable to the true mechanics of a given biological system and
those artificial dynamics arising from the modelling technique
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itself. Describing a biological system by different modelling frame-
works can hence help to identify true underlying mechanisms;
combining qualitative and quantitative modelling frameworks
(Toni et al., 2011); or augmenting modelling by evolutionary/com-
parative methods can provide reassurances as to the validity of
modelling studies (Huvet et al., Mar. 2011).

Here, we have performed a large-scale survey of all possible
two-node topologies using a discrete lattice gas cellular automaton
(LGCA) framework. This framework is much more restrictive than
the continuous approach, in that it confines the concentrations to
a small number of discrete values (four in our case) and comprises
discrete maps between these states rather than continuous kinetic
parameters.

Using this approach, however, we found the exact same five
network topologies capable of producing Turing patterns as in
the continuous modelling framework (Marcon et al., 2016; Zheng
et al., 2016; Scholes et al., 2019). Moreover, we found these five
topologies to be more robust in the LGCA framework than they
appear to be in the continuous case.

We also found that the presence of a type (II) instability,
although a stronger predictor than a diffusion-driven (type (I))
instability, is neither sufficient nor necessary for pattern formation
in the LGCA framework. Both criteria appear to be much weaker
predictors of emerging patterns than Turing instabilities in the
continuous counterpart. However, one has to keep in mind that
studies assessing the predictability of instability criteria in contin-
uous models typically do not assess the quality of the emerging
patterns and therefore allow for arbitrarily small amplitudes. It is
questionable how relevant patterns with arbitrarily small ampli-
tudes are for noisy biological systems. Including a threshold on
the amplitude in the definition of what constitutes a pattern in
continuous models would presumably decrease the predictability
of instabilities in these models, too. To some extent the smaller
predictability of instability criteria in the LGCA framework might
also be attributed to the stochasticity which makes the identifica-
tion and definition of a pattern less straightforward, as stochastic-
ity can wash out patterns and lead to breaking down of the
employed mean-field analysis. With regards to network topologies,
we found that, in contrast to the diffusion-driven instability crite-
rion, the refined criterion (type (II)) identifies the same five topolo-
gies capable of producing patterns in simulations. Our results thus
suggest that the type (II) instability is a better predictor of patterns
in simulations than the diffusion-driven instability (type (I)). The
fact that the restricted model considered in this work identifies
the same Turing topologies identified before in the continuous case
suggests that the exact molecular details might not be as impor-
tant as previously thought and hints at a deeper underlying princi-
ple of Turing mechanisms that is independent of the modelling
framework. The larger robustness we found also suggests that Tur-
ing patterns might be more robust than previous continuous stud-
ies suggest.
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Appendix A. Reaction step

Following from Section 2.1 we derive the general expression for
the channel after the reaction step. Recall from Section 2.1 that the
total number of particles of a given species r at a given position r
and time k is

nr grð Þ r; kð Þ ¼
X3
i¼1

gr;i r; kð Þ: ð6Þ

After the reaction step the newly updated total number of par-
ticles of species r at a given r and time k is

nR
r g r; kð Þð Þ ¼

X3
i¼0

X3
j¼0

Wi g1 r; kð Þð ÞFr i; jð ÞWj g2 r; kð Þð Þ; ð7Þ

where the indicator function W is defined as W gr r; kð Þð Þ ¼
w0 gr r; kð Þð Þ;w1 gr r; kð Þð Þ;w2 gr r; kð Þð Þ;w3 gr r; kð Þð Þ� �

with wi gr r; kð Þð Þ ¼ 1
when i particles of species r exist at the lattice position r and 0
otherwise. See supplementary S5 for a full expression of
W gr r; kð Þð Þ. Fr i; jð Þ denotes the updated value of species r from the
state x ¼ i; jð Þ as defined in Section 2.1. The superscript R indicates
the variable after the reaction step. We add stochasticity to the
interaction step by introducing sequences of space and time
independent identically distributed Bernoulli random variables
� 2 0;1f g; r 2 L; k 2 N. These variables determine whether the reac-
tion takes place or not. We further define p ¼ P � r; kð Þ ¼ 1ð Þ, where p
is the probability of the reaction taking place. We refer to p as the
‘‘noise parameter”. With these definitions the post-reaction total
number of particles of species r at a given r and time k reads

nR
r g r; kð Þð Þ ¼ 1� �ð Þnr r; kð Þ

þ �
Xl

i¼0

Xl

j¼0

Wi g1 r; kð Þð ÞFr i; jð ÞWj g2 r; kð Þð Þ; ð8Þ

Once the total number of particles nR
r are updated they are

redistributed back into the individual channels gR
r;i for all i, such

that

gR
r;i r; kð Þ ¼ 0; if nR

r r;kð Þ < i:
1; otherwise:

�
ð9Þ
Appendix B. Shuffling step, diffusion step and difference
equation

In this section we provide a formal definition of the shuffling
and diffusion steps described in Section 2.1, and give the full
expression for the difference equation in (3). We start by express-
ing the random shuffling step in terms of permutation matrices.
The set of permutation matrices for a system with three velocity
channels is
A3 ¼

1 0 0
0 1 0
0 0 1

2
6664

3
7775;

1 0 0
0 0 1
0 1 0

2
6664

3
7775;

0 1 0
1 0 0
0 0 1

2
6664

3
7775;

0 0 1
0 1 0
1 0 0

2
6664

3
7775;

0 1 0
0 0 1
1 0 0

2
6664

3
7775

8>>><
>>>:
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Using these we can write the updated channels in terms of the
set of local channels at spatial position r as

gR
r;i r; kð Þ ¼

X6
j¼1

fj r; kð Þ
X3
l¼1

gR
r;l r; kð Þajli; ð11Þ

where the superscript R indicates the variable after the shuffling

step. ajli denotes the element of the jth permutation matrix at
row l and column i, and fj 2 0;1f g; j 2 1; . . .6 are Bernoulli type
random variables, such that fj ¼ 1 for one j 2 1; . . . ;6f g and zero
otherwise. After the shuffling step we apply the jump diffusion
step as

gr;i r þ drci; kþ 1ð Þ ¼ gR
r;i r; kð Þ: ð12Þ

The evolution of the dynamics over time is described by the
microdynamical difference equations

gr;i r þ drci; kþ 1ð Þ � gr;i r; kð Þ ¼ gR
r;i r; kð Þ � gr;i r; kð Þ ð13Þ

¼
X6
j¼1

fj r; kð Þ
X3
l¼1

gR
r;l r; kð Þajli � gr;i r; kð Þ ð14Þ

¼ Cr;i g r; kð Þð Þ: ð15Þ
Appendix C. Linear stability analysis in the LGCA model

Here, we derive the equations needed for the stability analysis
used to define the instability criteria in the mean-field approach
in Section 2.3. As mentioned in Section 2.3, we use a small pertur-
bation to determine the stability of a given steady state: let
dmi r; kð Þ ¼ mi r; kð Þ � �m 2 R6 be a small perturbation around the
steady-state solution �m of Eq. (5), where i denotes the channel.
Using this in (4) and linearizing around �m we get the linear
lattice-Boltzmann equation

dmi r þ d ið Þc ið Þ; kþ 1
� �

¼ dmi r; kð Þ þ
X6
j¼1

Xijdmj r; kð Þ; ð16Þ

where the diffusion coefficient d ið Þ is the ith element of
dr¼1;dr¼1;dr¼1;dr¼2; dr¼2; dr¼2ð Þ and the direction c ið Þ is the ith ele-
ment of 1; 0;�1;1;0;�1ð Þ. The Jacobian X 2 R6�6 is defined as

Xij ¼ @Ci dm r; kð Þð Þ
@dmj r; kð Þ

����
m¼m�

: ð17Þ

Consider a harmonic wave perturbation of the form

dmi r; kð Þ / kk cos
p
L
qr

� �
; ð18Þ

where q ¼ 0 corresponds to a spatially homogeneous perturbation.
Next, we consider a general perturbation F q; kð Þ ¼ F1 q; kð Þ; . . . ;ð
F6 q; kð ÞÞ and express each of its components as a sum of sinusoidal
terms as

Fi q; kð Þ ¼
X
r2L

dmi r; kð Þe2pi
L qr: ð19Þ

Applying the discrete Fourier transformation to the linear
lattice-Boltzmann Eqs. (16) gives
;

0 0 1
1 0 0
0 1 0

2
6664

3
7775
9>>>=
>>>;
: ð10Þ
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Fi q; kþ 1ð Þ ¼ e�
2pi
L qd ið Þc ið Þ

Fi q; kð Þ þ
X6
j¼1

XijFj q; kð Þ
 !

; ð20Þ

which we write in vectorised form as

F q; kþ 1ð Þ ¼ C kð ÞF q; kð Þ;8q; ð21Þ
where C kð Þ is the Boltzmann propagator defined by

Cij qð Þ ¼ e
�2pi
L qd ið Þc ið Þ

dij þXij
� �

: ð22Þ
In matrix notation this can be written as

C qð Þ ¼ T IþXð Þ: ð23Þ
where T 2 R6�6 which is known as the ‘‘Transport matrix” and

defined as a diagonal matrix with elements Tjj ¼ e
2pi
L qdjcj , and

I 2 R6�6 is the identity matrix. IþXð Þ is a block matrix and reads

IþXf g ¼

x1 x1 x1 x2 x2 x2

x1 x1 x1 x2 x2 x2

x1 x1 x1 x2 x2 x2

x3 x3 x3 x4 x4 x4

x3 x3 x3 x4 x4 x4

x3 x3 x3 x4 x4 x4

2
666666666664

3
777777777775
; x1;x2;x3;x4 2 R;

ð24Þ
where the xi are steady-state dependent constants and defined in
the Supplementary material S5.

We define KC qð Þ ¼ k1 qð Þ; k2 qð Þ; k3 qð Þ; k4 qð Þ; k5 qð Þ; k6 qð Þð Þ, where
ki qð Þ is the ith eigenvalue of C qð Þ. The ki determines the stability
of a given steady state and are obtained as solutions of

jC qð Þ � kIj ¼ 0; ð25Þ
where j � j denotes the determinant. Due to the block structure of
C qð Þ (c.f. Eq. 24) only two of the eigenvalues are non-zero:
KC qð Þ ¼ k1 qð Þ; k2 qð Þ;0;0; 0;0ð Þ, with
k1;2 qð Þ ¼ 1
2

x1u1 qð Þ þx4u2 qð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 x2x3 �x1x4ð Þu1 qð Þu2 qð Þ þ x1u1 qð Þ þx4u2 qð Þð Þ2

q� �
; ð26Þ
where ur qð Þ ¼ 1þ e�
2pi
L qdr þ e

2pi
L qdr . When q ¼ 0; k1 and k2 define the

stability of the non-spatial system.

Appendix D. Power spectrum analysis

In this section we provide details on how we use the power
spectrum in Section 2.4 to automatically identify patterns in simu-
lations as outlined in Section 2.4. Since either both or none of the
two species show patterns in simulations, we only use the number
of particles n1 r; Tð Þ and n1 r; T � 1ð Þ of the first species defined in Eq.
(2) at the last two time points T and T � 1 to identify patterns. The
normalised power spectrum of a simulation run as described in
Section 2.4 is given by

S qð Þ ¼ j
XL�1

r¼0

n1 r; Tð Þ þ n1 r; T � 1ð Þ
2

e
�2piqr

L j2: ð27Þ

The average over the last two time points is taken to get rid of
oscillatory spatial structures that would produce significant peaks
in the power spectrum at single time points. To average out fluctu-
12
ations we perform K simulation trials. Let S qð Þ ið Þ
; i ¼ 1; . . . ;K be the

corresponding power spectra computed as in Eq. (27). We accord-
ingly define S qð Þ as the average over the K trials:

S qð Þ ¼ 1
K

XK
j¼1

S qð Þ jð Þ
: ð28Þ

If S qð Þ possesses a clear peak at a certain wavenumber q this
indicates a spatial pattern in the simulation results with wave-
length L=q. To identify such a peak we fit a Lorentz distribution
to S qð Þ to quantify the quality of a pattern. The Lorentz distribution
is defined as

f x; x0; cð Þ ¼ 1

pc 1þ x�x0
c

� �2� 	 ð29Þ

King (2013). We determine the median x0 by finding the fre-
quency in which the cumulative distribution function is equal
to 0.5. We then use the method of least squares to determine
the value of the scale parameter c 2 0;1½ �. The smaller the scale
parameter the sharper the peak and hence the clearer the pattern
in the spatial domain. We thus use a threshold on c to judge if a
simulation result contains a pattern or not, as explained in
Section 2.4.

Appendix E. Identifying patterns with characteristic
wavelengths

In Section 3.2 we discuss three types of simulation outcomes.
Two of these correspond to spatial pattern-like structures that
can arise: one with and one without characteristic wavelengths.
A spatial structure is said to have a characteristic wavelength if
the wavelength is independent of the spatial domain size. Fig. 5
b) and c) show spatial structures produced over two different spa-
tial domain sizes. Figure c) shows patterns with the same wave-
length for both domain sizes, meaning the structure has a
characteristic wavelength, whereas Figure b) shows patterns with
the same bisection of the spatial domain into two halves. The
wavelength therefore depends on the domain size and is not char-
acteristic of the system that produced it.

Since we are interested in patterns with characteristic wave-
lengths we need to distinguish them from patterns that do not pos-
sess a characteristic wavelength. To this end we compare the
wavelengths obtained by simulating a map on the two domain
sizes L ¼ 100 and L ¼ 500. The wavelength for a given simulation
is given by L=q where L is the domain size and q is the location
of the peak in the power spectrum (c.f. Fig. 5). If the two wave-
lengths obtained for the two domain sizes deviate by less than
10% from each other we consider them to be the same and con-
clude that the pattern has a characteristic wavelength.
Appendix F. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jtbi.2021.110901.
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