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a b s t r a c t

The present work explored the definitions and calculations of fractal dimensions in protein
structures and the corresponding relationships with the protein class, secondary structure
contents, fold type as well as kinetic and thermodynamic parameters like the folding and
unfolding rate, the folding–unfolding free energy and others. The results showed a positive
correlation of some fractal exponents with the kinetic and thermodynamic variables even
considering the effect of the protein length. On the other hand the influences of secondary
structures types, especially the turn conformation are significant as well as the fractal
exponent profiles according to class and fold types.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of fractal properties of proteins has been carried out almost from the beginnings of fractal theory development
using, for this purpose, the two common forms of protein information: the amino acid sequence and the three-dimensional
structure of proteins [1–3]. With renormalization group theory the fractal properties of polymers were revisited including
several aspects of the secondary structure influences and structure classification [4,5,2,3]. However the application and
spectrum of relationships between fractal dimensions (FD) and areas of interest like protein folding and thermodynamic
properties have been little explored. In the present work, we applied several methodologies of the FD calculation to
the three-dimensional structure including a modified formulation using contact maps. We showed that some of these
indexes are related to the protein folding rate, protein classes, secondary structures and other topological, kinetic and
thermodynamic parameters; however, these relationships will depend on the FD definition types.

2. Theoretical background

There are several approaches to the FD calculations in the three-dimensional protein structures and, in general, we can
classify them into two groups depending on whether the amino acid connectivity is considered or not.
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Fig. 1. (A) Scale profile for the calculation of D1 with and without the corrections. We can note the linearity improvement with the correction mostly to
high n values. (B) Scale profile for the calculation of D2 . The presented calculations were made using a carboxypeptidase protein (1AC5 PDB code) as an
example.

2.1. Methods that consider the amino acid connectivity

In these kinds ofmethods, two similar approaches are available, and both are using the protein length as amajor variable.
The first method [1] defines the protein length as:

L(n) = Lo(n)+
N − nσ − 1

nσ
Lo(n) (1)

where σ = int
(N
n

)
− 1, N is the amino acid number and n is the length interval. The first term of this equation (Lo(n))

corresponds to the length of the chain for the n-integer segments while the second term is the remaining length of the
segment. The fractal dimension (D1) is then calculated by: L(n) = B · n1−D1 in the scale-range where ln(L(n)) and ln(n)
are truly linearly related. This method could be improved as follows: (1) perform the L(n) measure starting from different
Cα instead the terminal Cα only and (2) using the actual end-to-end distance of the remaining residues. These corrections
increase the quality of the regression principally for high n values [6] (Fig. 1A).
The second method [4,5,2] considers the protein length as:

〈
Rs(n)2

〉
=

1
N − n+ 1

N−n+1∑
i=1

R2i,i+n (2)

where R2i,i+n, is the square of the distance between the extremes i and i+ n, of the chain with N amino acids and n intervals
like in the previous method. The fractal dimension D2 is calculated one more time by linear regression in the scale-range

appropriate to the logarithmic form of:
[〈
Rs(n)2

〉1/2]D2
= A · n.

The theoretical values of D1 and D2, in the case of self-avoided walk (SAW) model, are 1.40 and 5/3 respectively
[6,4,3] and the previous works have confirmed that these values are very close to those obtained in protein calculations
[1,6,4,5,2,3]. However in Fig. 1A even when corrected, it was possible to note an inflexion point around n = 15 that was not
shown in all the studied proteins. In agreement with the preceding works [6,7], we calculated D1 in two different intervals
1 ≤ n ≤ 15 (D1−151 ) and 15 ≤ n ≤ 30 (D15−301 ). The inflexion point was observed in the second methodology (Fig. 1B) too,
however in general the linearity was poor for high n values and for this reason the D2 was calculated only in the 1 ≤ n ≤ 15
interval. The possible differences of these scales will be discussed later.

2.2. Methods considering the spatial atomic distribution

These methods consider the proteins like clouds of points. The most common approach is the mass fractal dimension
[8,9] where 〈M(ε)〉 ∼ εdm and is calculated by counting the number of atoms inside the sphere of radius (ε) taking any
atom of the space as centre. The average value obtained from several centres and radii is used to determine dm from the
slope of ln(〈M(ε)〉)with respect to ln(ε). Another methodology used in the image analysis is the classical box count fractal
dimension [10] (Db)which consists of covering the three-dimensional space occupied by the object with a number of cells
of ε size (N(ε)) and afterwards count the number of these cells that are occupied. This procedure is repeated with several
cell sizes and the dimension is calculated by the slope of log(N(ε))with respect to log(1/ε) (Fig. 2B).
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Weexploited anotherway to do the calculation of the FDusing the contactmap and the contact number (Nc(ε))definition
as the starting point. The contact map matrix (Mc(ε)) is defined as:

Mci,j =
{
1 if di,j ≤ ε
0 if di,j > ε or i = j (3)

where ε represents the cut-off distance and di,j is the special distance between the residues i and j. The contact number by
residues N(ε)i is then:

Nc(ε)i =
N∑
j

Mci,j =
N∑
j

θ
(
ε −

∥∥di,j∥∥) (4)

where N is the amino acids number and θ is the Heaviside function. The total number of contacts in the protein N(ε) is:

Nc(ε) =
N∑
i

Nc (ε)i =
N∑
i

N∑
j6=i

Mc i,j = 2
N∑
i<j

θ
(
ε −

∥∥di,j∥∥) . (5)

The last term considers the symmetrical properties of the contactmatrix. The relationship betweenNc, ε and FD could be
easily deduced using the definition of correlation dimension of Grassberger and Procaccia [11] used in images and temporal
series analysis: C(ε) ∼ εDc . The correlation function is defined as:

C (ε) =
2

N(N − 1)

N∑
i<j

θ
(
ε −

∥∥rij∥∥) . (6)

where N in this equation corresponds to the number of points and ri,j is the distance between points i and j. It is easy to note
that in our case N is equal to the residue numbers and ri,j = di,j. Therefore by substitution of Eq. (4) in Eq. (5):

C (ε) =
1

N(N − 1)
Nc (ε) . (7)

Note that N(N − 1) is a normalization term, therefore C(ε) could be considered as the probability that any two residues
are in contact at a cut-off distance ε. As C(ε) ∼ εDc then Nc(ε) ∼ εDc and the fractal dimension (Dc) is calculated by the
slope of ln(C(ε)) vs ln(ε) (Fig. 2A).

2.3. Relationship between dm and Dc

As we saw before, 〈M(ε)〉 ∼ εdm, howeverM(ε) to the centre I , which could be calculated as:

M(ε)i =
N∑
j

θ
(
ε −

∥∥di,j∥∥) . (8)

That is exactly the number of atoms inside the radio ε and centre i. If we make the sum over all the centres and using
Eq. (6), the average mass for a given radio is:

〈M(ε)〉 =
1
N

N∑
i

N∑
j6=i

θ
(
ε −

∥∥di,j∥∥) = 1N
N∑
i

N∑
j6=i

Mci,j =
1
N
Nc(ε) = (N − 1)C(ε). (9)

From Eq. (8) we note that if Nc(ε) ∼ εDc ∼ εdm, then the slope of ln(〈M(ε)〉) vs ln(ε) is equal to dm = Dc . It is evident
that the last one is true for very big structural systems where the frontier or limited size effect is not present. However
the residues located in the protein surface could affect the dm = Dc equality, in fact, the mass fractal dimension is often
calculated in residues close to the centre of mass [8,9]. The convenience of defining the mass fractal dimension as a function
of the contact map bring firstly a comfortable formulation and secondly the contact map has an intuitive physical meaning
and is used in several formulation related to folding and structure prediction as well as graph theory where an arsenal of
theoretical and mathematical tools are available.

2.4. Spectral dimension

The spectral dimension could be classified in the second group ofmethods because the residue connectivity is not implicit
in the formulation. The calculation of the spectral dimension is performed on the basis of Laplacian or Kirchhoff matrices
(Γ ):

Γ = −Mc + D (10)
where D represents the matrix degree. The spectral dimension is calculated by the relation G(ω) ∼ ωDs−1 where G(ω) de-
notes the density of low frequency modes calculated from the eigenvalues of Γ . In the present work, two cut-off values 6
and 7 Å were used to calculate Ds6 and Ds7 respectively using the first 50 modes [9,12].
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Fig. 2. (A) Scale profile for the calculation of Dc. We can note a wide linear interval. (B) Scale profile for the calculation of Db. The presented calculation
was made using a carboxypeptidase protein (1AC5 PDB code) as example.

2.5. Contact order

Besides the fractal dimensions we calculate the contact order (CO) defined as [13]:

CO =
1

N · Nc

N∑
ij

1Lij. (11)

where N was the residue number, Nc was the contact number for a predefined cutoff of 6 Å and 1Lij was the number of
residues between i and j that are in contact.

3. Protein group selected and secondary structure calculation

We selected a total of 870 proteins from the Protein Data Bank [14] with X-Ray diffraction as the structure elucidation
method, a resolution of less than 2.5 Å and composed of only one chain. The protein length interval of selected proteins is
198–937 (min–max) residues with an average of 314 ± 99 residues. The class and fold assignment were according to the
SCOP database [15]. The calculation of fractal dimensions, contact order, and amino acids and secondary structure percent,
were done with Pascal homemade software. The complete set of proteins is available in the Supplementary Materials I (see
Appendix).

3.1. Thermodynamic and kinetic data

For the study of the relationships between fractal exponents, folding kinetic and thermodynamic parameters, we
extracted a protein set from several articles. The complete list is presented in the SupplementaryMaterials II (see Appendix).

3.2. Secondary structure content

The secondary structure assignment was performed using the DSSP software [16].We considered the residue number in:
α-helix (H), the extended strand, participates in β-ladder (E), bends (S), H-bonded turns (T), 310-helixes (G) and the residues
in isolated β-bridges.

4. Results and discussion

The relationships between the fractal dimension values calculated using the different methods as well as the values
obtained for the complete set of proteins, revealed two groupswith different properties: a first groupDc,Db, dmwere highly
inter-correlated with increased values and the other one D1−151 and D2 with similar inter-correlations but lower exponent
values (Tables 1 and 2). The reasons of these differences were associated with the consideration or not of the amino acids’
connectivity [5,2]. In the first group the scaling exponent was referred to the geometrical radius whereas the considerations
of connectivity resulted in scaling exponent with respect to the end-to-end distance.
The Ds values are lower than Dc, Db or dm however the correlation within this group is higher with respect to the

second one (Table 2). The values obtained for D1−151 and D2 are very close to the SAW model as has been confirmed by
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Table 1
Global median values of fractal dimensions calculated in the complete protein set.

Dc 2.58 (2.54–2.62)
Db 2.05 (1.98–2.12)
D1−151 1.38 (1.36–1.4)
D1−152 1.54 (1.5–1.58)
D15−301 1.97 (1.8–2.12)
Ds7 1.86 (1.82–1.9)
Ds6 1.72 (1.67–1.76)
dm 2.85 (2.8–2.9)

The values between (. . .) represent the 25 and 75 quartiles interval.

Table 2
Correlation values between the fractal dimensions calculated by several methods.

Dc CO Db D1−151 D2 D15−301 Ds7 Ds6 Dm

Dc 1.00 0.46 0.61 0.61 0.70
CO 1.00 0.11 0.08 −0.08 0.18 0.32 0.31
Db 0.46 0.11 1.00 0.44 0.40 0.38
D1−151 0.08 1.00 0.76 0.10 0.21 0.14
D2 −0.08 0.76 1.00 0.14 0.07
D15−301 0.18 0.10 1.00 0.18 0.14 −0.07
Ds7 0.61 0.32 0.44 0.21 0.18 1.00 0.87 0.42
Ds6 0.61 0.31 0.40 0.14 0.14 0.87 1.00 0.41

Blank space cells represent insignificant correlation (p > 0.05).
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equations follow the same pattern corresponding to different representations of the protein structure. The represented calculation was made using the
porcine ribonuclease inhibitor protein (PDB code: 2BNH) as an example.

other authors [1,6,4,5,2,3,7–9]. However the D15−301 values are higher that of the SAWmodel in fact, this value is higher than
the corresponding ones of unrestricted random walk (URW) model (1.5 approximately). This could lead to the conclusion
that the proteins aremore compact as wewould expect from a URW chainwhere no interaction forces are present, however
it is contrary to all the other fractal exponents where they remain clearly as an intermediary state between poor (or good
solvent like) and high (bad solvent) compactness.
TheD15−301 index is poorly correlatedwith all the other indexes and this could be caused by two possible factors: algorith-

mic error or different scale behaviour. The inflexion point noted in the D2 calculation (Fig. 3) is not shown in all the proteins
and remains with the algorithm correction. On the other hand it was not present in the methods that did not consider the
amino acid connectivity.
If the scale length (n) increases, the secondary structure geometry influence decreases, the helixes and turns, for example,

disappear, emerging an overall geometry that could has a different self-similarity rule (Fig. 3B) and therefore, could be
regulated by another scale exponents. Over the n = 28 (in the Fig. 3 example) the geometry (almost a curve) will change
increasing the roughness similar to n = 10. This effect begins with small scale values when the limited size effect (n ∼ N)
is not predominant. Multifractal patterns have been found in protein sequences [17,18] however in protein structure it is
almost unexplored.
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Table 3
Median values of the studied variables according to the class groups.

α β α/β α + β

Dcc 2.55 (2.5–2.62) 2.58 (2.52–2.62) 2.59 (2.55–2.62) 2.57 (2.53–2.6)
Dbc 2.02 (1.95–2.11) 2.06 (1.97–2.13) 2.06 (1.99–2.13) 2.02 (1.96–2.11)
D1−151

a 1.37 (1.34–1.4) 1.40 (1.37–1.43) 1.38 (1.36–1.4) 1.39 (1.36–1.41)
D2c 1.54 (1.48–1.58) 1.52 (1.47–1.57) 1.54 (1.5–1.58) 1.55 (1.49–1.6)
D15−301

b 1.72 (1.61–1.83) 2.06 (1.91–2.26) 1.98 (1.85–2.13) 2.00 (1.83–2.11)
Ds7b 1.80 (1.75–1.88) 1.90 (1.83–1.95) 1.86 (1.82–1.9) 1.85 (1.82–1.89)
Ds6a 1.67 (1.6–1.73) 1.74 (1.7–1.8) 1.72 (1.68–1.76) 1.70 (1.66–1.75)
dmc 2.83 (2.71–2.91) 2.83 (2.78–2.87) 2.87 (2.82–2.91) 2.84 (2.79–2.88)

The values between (. . .) represent the 25th and 75th quartile intervals.
a Significant differences (p < 0.01) between all groups.
b Significant differences (p < 0.01) between all groups except between the groups: (α/β) and (α + β).
c See the discussion.

According to Eq. (9) we must expect that Dc ∼= dm, however Dc < dm (Table 1). This is a consequence of the different
residue distributions in the core and surface. The surface residues have a less compact environment and consequently tend
to decrease the fractal dimension contrary to core residues.

4.1. Class and secondary structure relationships

As was referred to and according to the previous works, the D1−151 values must depend on the secondary structure type.
Ideally secondary structure D1−151 values are: 1.44 (0.13), 1.09 (0.06), 1.06 (0.04) and 1.07 (0.05) for the α-helix, parallel β-
sheet, anti-parallel and twistedβ-sheet respectively [6,2,7]. In theα-helix and reverse turn geometry the distance separation
between not neighboring residues is less, increasing the fractal dimension contrary to the ordered β-sheet.
In the previous works [6] with a dataset of 90 proteins, the D1−151 values for β class were relatively larger (1.33) with

respect to the ideal value while α class was around 1.41. In our results, only D1−151 , D15−301 , Ds6 and Ds7 are significantly
different between α and β classes with a relative higher values of β with respect to α class (Table 3). The other exponents
are only different with respect to α and β mixed classes. However, the D2 values show significant differences between
(α/β), (α + β) and β classes but the influence of α group cannot be discriminated. On the other hand the Dc and dm inter-
group differences are only significant with respect to (α/β), corresponding to the higher dimensions, that could indicate a
predominant compact core in this protein family.
The influence of turns on the fractal exponent is positive and relatively strong however, the influence of α and β

percentage are in disagreement with ideal values and the previous works. One of the possible reasons of these deviations
is associated with the turn percent. We can note that higher dimension values correspond to proteins with high content
of turns in α-class as well as β-class. In general however, the frequent presence of β structures (and low α-helix) lead to
elevated compositions of turns (>20%) that increase considerably the dimension values (Fig. 4). This effect could explain
the increased values of β-class.
Even when the turn influence could explain the increment of fractal exponents in the β-class, a global explanation

including the α-class behavior is more difficult because in fact, the exponent variations are fold type dependent. The fractal
exponents only do not depend of the composition but they are also influenced by the location and deformation of the
secondary structures. In out dataset, there are 182 different fold types (following the SCOP classification) with a very wide
secondary structure distribution and dimensions (Table 4).
Proteins with approximately the same secondary structure percentage could have different fractal exponents and vice

versa. The annexins (47873) and cytochrome c (46625) fold types have similar values ofDc andD1−151 (Table 4), however the
secondary structure percentage is different. On the other hand, with respect to α/α toroid (48207) a contrary relationship is
noted. The explanation of these differences is not simple, even when a wide distribution of the α-helixes around the protein
core could explain the fractal exponent increment; the same thing could be said concerning to the α-helixes on the surface.
Similar pattern could be noted comparing the 7-bladed beta-propeller (50 964) and Immunoglobulin-like beta-sandwich
(48725) fold types.

4.2. Kinetic and thermodynamic relationships

The influence of the native structure topology on the folding rate is a well-known phenomenon. The two-state folding
proteins show a correlation with CO and several others topological parameters related to the protein length and the
secondary structure [19–21]. On the other hand in the three or multiple-state folding proteins this correlation with CO
is poor and the folding rate (ln kf ) is mostly related to the protein length [22–24] (N) as a general power law ln kf ∼ Nα .
Others topological descriptors based on graph analysis had been related to the folding–unfolding free energy or the unfolding
rate [25], however, the relationship between the fractals exponent an all theses kinetic and thermodynamic variables are
little explored.
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Table 4
Results for some of the fold types present in the dataset.

Fold code Class Dc Db D1−151 D2 Ds6 dm α-% β-% Turn-%

46625 α 2.55 2.07 1.38 1.54 1.72 2.83 38.71 8.53 23.54
47873 2.54 1.96 1.38 1.56 1.66 2.81 71.66 0.00 13.86
48112 2.63 2.10 1.39 1.55 1.74 2.89 46.57 6.59 24.10
48207 2.62 2.04 1.40 1.62 1.73 2.89 54.92 7.32 20.47

48725 β 2.46 1.81 1.38 1.42 1.68 2.51 2.18 48.84 21.98
51181 2.56 1.94 1.36 1.49 1.69 2.81 28.36 27.95 20.47
50629 2.59 2.08 1.44 1.59 1.78 2.83 12.85 46.89 22.17
50938 2.64 2.05 1.42 1.57 1.77 2.97 7.87 46.29 22.74
50964 2.64 2.00 1.44 1.58 1.70 3.01 2.95 51.90 26.96
50933 2.65 2.07 1.42 1.52 1.71 2.96 3.15 49.00 27.14

52046 αβ 2.51 2.02 1.43 1.61 1.88 2.56 14.33 21.14 28.71
55619 2.52 2.03 1.34 1.47 1.66 2.73 31.70 33.25 18.08
52373 2.56 2.06 1.35 1.49 1.66 2.86 55.24 10.09 16.56
52539 2.56 2.00 1.36 1.46 1.68 2.84 41.30 23.03 17.17
51350 2.61 2.07 1.37 1.52 1.73 2.89 43.06 16.83 20.90
53849 2.61 2.05 1.40 1.59 1.76 2.89 40.40 18.90 22.39
52732 2.68 2.05 1.38 1.52 1.77 2.88 51.55 11.05 17.97
53162 2.66 2.06 1.37 1.49 1.76 2.93 37.58 18.29 24.76

The fold and class type classifications are according to the SCOP 1.73 notation. The values are the average of those proteins corresponding to the same fold
type and with a residue number close to 300 (298–340).

Table 5
Correlation coefficient between fractal exponents and several folding kinetics and thermodynamics parameters.

ln kF ln kU 1GeqN−U mF mU meq βTS

Db −0.51
CO −0.29
Dc −0.52 −0.61 0.49 −0.38 0.53 −0.54 −0.39
D2 0.27 0.45 0.40
D1−151 0.47 0.28
dm −0.46 −0.58 0.62 −0.33 0.51 −0.48 −0.43
Ds7 0.29 −0.36

Blank space cells represent insignificant correlations. ln kF , ln kU : Natural logarithm of protein folding and unfolding rate respectively. 1G
eq
N−U : The free

energy of unfolding in water. mF ,mU : The dependence of natural logarithms of folding and unfolding rates respectively on denaturant concentration.
meq: The dependence of the free energy of unfolding on the denaturant concentration. βTS : Position of transition state in the reaction coordinates.

TheDc and dm show awide correlationwith several folding parameters contrary to the fractal exponent based on protein
connectivity. In these cases where a correlation is present simultaneously with both kinds of fractal exponent, a contrary
effect is noted (Table 5). Once more this is a consequence of the different physical meaning involved in the calculations.
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The increment in the fractal exponent is associated with a reduction in the folding and unfolding rate (Table 5, Fig. 5).
The data presented in Fig. 5 as well as the calculated correlation coefficients (r = −0.52 and r = −0.61 for ln kF and
ln kU respectively) do not exclude the effect of the protein length however performing a partial correlation using the protein
length as a control variable the correlation is reduced but remain significant (r = −0.43 and r = −0.58 for ln kF and ln kU
respectively). The correlation differences between Dc and dm are small except for the1GeqN−U as a consequence of the influ-
ence of surface residues. The reduction of correlation by surface residues inclusion could be explained considering that the
variation of compactness associated with the residue inclusion is not homogeneous; this means that the surface residues
inclusion has not the same effect in all the proteins. The high correlation of dm suggests that the core topology has a major
effect on the folding thermodynamic and kinetic properties.
The denaturant concentration increment is associatedwith a decrement in the folding rate (mF < 0) and this influence is

deeper in low density core proteins. The denaturant can deform the native state easily in those proteinswhere themolecular
accessibility is higher and therefore less compact residues distribution. The influence of secondary structure (principally
turns and α-helixes) is important to the final value of fractal exponent and its in agreement with the previous works that
showed that the folding rate and transition state position could be predicted considering the number of residues inα-helixes
structure [26,27]. This alpha influence is not a hierarchy of secondary structure formation;many pathways could be followed
in the energy landscape altering the secondary order formation because many of these local structures are present in the
unfolded and transition states.
The fractal exponent similarities in several folds types suggest that the local environment and interactions of different

secondary structures need to be considered aswell as the secondary structure content in the relationships between topology
and folding rate, principally because, many of these aspects (principally in the core) are similar in the transition state
structure.

5. Conclusions

In the present work we explored several definitions and calculations of fractal dimension in protein structures as well as
their relationships with the protein classes, fold types and kinetic and thermodynamic parameters.
Most of the fractal exponents are significantly different for α- and β-class proteins; however those exponents calculated

considering amino acid connectivity seems to be more accurate for α- and β-class differentiation. The presence of turns
has a considerable influence on the fractal exponent calculation; tending to increase the values in all the classes. The fractal
exponent values are dependent on the fold type and therefore on the location and connectivity of the secondary structures.
We have shown correlations of several fractal exponents with the folding/unfolding rate, folding/unfolding free energy,

and position of transition state in the reaction coordinates as well as other thermodynamic and kinetic variables that help
to integrate compactness properties associated with the fractal exponents.
On the other hand, several aspects related to scales anomalieswere explored suggesting a possible structuralmultifractal

behaviour at least in some proteins and mainly presented if the residue connectivity is considered, this means, if the
measurement is performed on base of the end-to-end protein length.
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